Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active. COVID-19 in patients with cardiac disease: Impact and variables associated with mortality in a cardiology center in Brazil Mariah Rodrigues Paulino, José Alfredo de Sousa Moreira, Marcelo Goulart Correia, Léo Rodrigo Abrahão dos Santos, Ingrid Paiva Duarte, Letícia Roberto Sabioni, Fabiana Bergamin Mucillo, Rafael Quaresma Garrido, Stephan Lachtermacher Pacheco, Andrea de Lorenzo, Cristiane da Cruz Lamas PII: S2666-6022(21)00067-7 DOI: https://doi.org/10.1016/j.ahjo.2021.100069 Reference: AHJO 100069 To appear in: Received date: 18 July 2021 Revised date: 26 September 2021 Accepted date: 29 October 2021 Please cite this article as: M.R. Paulino, J.A. de Sousa Moreira, M.G. Correia, et al., COVID-19 in patients with cardiac disease: Impact and variables associated with mortality in a cardiology center in Brazil, (2021), https://doi.org/10.1016/j.ahjo.2021.100069 This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. © 2021 Published by Elsevier Inc. Title: COVID-19 in patients with cardiac disease: impact and variables associated with mortality in a cardiology center in Brazil ### Authors: Mariah Rodrigues Paulino ¹, José Alfredo de Sousa Moreira ¹, Marcelo Goulart Correia¹, Léo Rodrigo Abrahão dos Santos ², Ingrid Paiva Duarte ², Letícia Roberto Sabioni ¹, Fabiana Bergamin Mucillo ¹, Rafael Quaresma Garrido ¹, Stephan Lachtermacher Pacheco¹, Andrea de Lorenzo ^{1,3}, Cristiane da Cruz Lamas^{1,2,4} - 1- Instituto Nacional de Cardiologia, Rio de Janeiro, Prasil; - 2- Universidade do Grande Rio (UNIGRANRIC), Ric de Janeiro, Brasil - 3- Universidade Federal do Rio de Janeiro, Kin de Janeiro, Brasil. - 4- Instituto Nacional de Infectolor, a Evandro Chagas, Fiocruz, Rio de Janeiro, Brasil All authors take responsibility for all aspects of the reliability and freedom from bias of the data presented and their discussed interpretation. Acknowledgement of grant support: none. Conflicts of interest is reported by none of the authors. **Keywords:** coronavirus; COVID-19; cardiac disease; cardiac surgery; hospitalization; mortality | Corresponding author: | |--------------------------------------------------| | Cristiane Lamas, email: cristianelamas@gmail.com | | Phone number 5521-991628048 | | Address: | | Cardiovascular Research Unit | | 5th floor, Instituto Nacional de Cardiologia | | Rua das Laranjeiras 374 | | Rio de Janeiro 22240-006 | | RJ/Brazil | | Alternative corresponding au hor: | | Mariah Paulino, e-ma.'· rpmariah@hotmail.com | #### Introduction The World Health Organization (WHO) declared the new beta-coronavirus (SAR-CoV-2) infection a pandemic on 11th March 2020 and named the associated illness COVID-19. The outbreak of COVID-19 has caused serious disease in Brazil and globally ^{1,2,3}. As of 24 September 2021, there have been 230.418.451 confirmed cases of COVID-19, including 4.724.876 deaths, reported to WHO. Brazil is considered one of the new epicenters of this pandemic, having accumulated the third largest number of confirmed cases by country (21,283,567) and the second largest number of deaths (592,316)³. The majority (80%) of patients with COVID-19 accident mild symptoms, but some present a clinical picture of moderate severity which requires hospitalization (10-15%) and a smaller group (5-15%) has a severe illness with acute respiratory failure, septic shock and multiple organ failure ^{4,5}. Age above 60 years, male gender, high a-dimer levels, and comorbidities are risk factors for death and admission to IC', in patients with COVID-19 1,6-14. An important meta-analysis of 21 multinational studies, including 11,766 cases of COVID-19, showed that cardiovascular diseas, was an independent predictor of severe COVID-19, even after controlling (x) age and gender 15 . Early on in the pandemic, a Chinese study with 109 patients showed that 78% of patients admitted to ICU with COVID-19 had previous comorbidities, in which systemic arterial hypertension (HAS), cardiovascular disease (CVC), diabetes mellitus (DM), chronic renal disease, immunosuppression, beeity and chronic obstructive pulmonary disease (DPOC) were the most common ^{1, 16}. A Spanish study with 15.110 cases showed that the most frequent comorbidities were systemic arterial hypertension (HAS) (50.9%), dyslipidaemia (39.7%), obesity (21.2%) and diabetes mellitus (19.4%) ¹⁷. Another large study carried out in the UK with 20.133 patients showed that 30.9% bore some form of chronic cardiopathy; 10.7% were diabetic, 17.7% had chronic obstructive pulmonary disease (COPD) and 16.2% had chronic renal disease (CRF) ¹⁸. In Brazil, cardiopathies and diabetes mellitus were the comorbidities most associated with deaths, and systemic arterial hypertension (HAS) was the most prevalent in all COVID-19 cases 9. Furthermore, when someone bears multiple comorbidities, this significantly increases the risk of serious outcomes related to COVID-19. A systematic literature review with 202.005 patients with COVID-19, showed that the mortality rate when one comorbidity was present was 6%, and when six or more were present, this was 21% ¹⁹. Moreover, cardiac complications of COVID-19 are frequent. physiopathology of cardiac injury involves infection via angiotensin-II converting enzyme receptors, causing systemic endotheliitis. This endothelial dysfunction occurs as a direct effect of SARS-CoV-2 tropism to the vascular tissue, inducing or potentiating a previous imbalance (as in patients with cardiovascular and metabolic diseases) of the intracellular Renin Angiotensin system. Atherosclerotic plaques may rupture, and stent thrombosis may occur. These phenomena, together with a pre-existing endothelial lesion that accompanies patients with comor idit as such as hypertension, diabetes, coronary artery disease (CAD) and obesity, can predispose to more severe presentations and a worse prognosis of COVID-19. These injuries result in organ dysfunction and circulatory collapse. Some pathological studies show infiltration of inflammatory mononuclear interstitial cells, suggesting myocardial inflammation as an underlying mechanism. Serious or fulminant myocarditis have also been reported 2,20. COVID-19 decompensates cardiac failure in patients with pre-existing cardiac diseases and elevates serum troponin level in critical patients ². In a study carried out in Germany with 138 patients admixted with COVID-19, 16.7% developed arrhythmia and 7.2% suffered an acute cardiac injury²¹. Another German study which included 100 patients showed that 78% of them had cardiac involvement when evaluated by MRI². Patients with und orlying cardiac conditions fare worse in COVID-19, and to understand variables associated with mortality in this subgroup could impact on clinical decisions and guide public health policies. The aim of this report was to describe the demographic, clinical and laboratory features electrocardiographic and echocardiographic ones) and outcomes of patients with cardiac disease hospitalized with COVID-19 in a reference cardiology institution in Brazil. Although patients with heart disease have been known to fare worse in COVID-19, no study specifically addressing this cohort of patients, in a specialized Cardiology institution has been published in Brazil or elsewhere to our knowledge. Therefore, it is important to understand how cardiac patients evolve when ill with COVID-19 and what are the prognostic markers for mortality in this particular set of patients. #### Methods This is an observational retrospective study of consecutive adult patients admitted, between March and September of 2020 with a diagnosis of SARS-CoV-2 infection confirmed by RT-PCR, to the National Institute of Cardiology (NIC), a public, quaternary-care hospital in the city of Rio de Janeiro, Brazil. Two information sheets were used to collect data, one of which was elaborated by the *International Severe Acute Respiratory and Emerging Infection Consortium* (CORE COVID-19 CASE REPORT FORM , available in the ISARIC site in several languages) ²² and the other form was created by our group, with an emphasis on variables relate: to cardiovascular illness. Data were collected from patients' electronic records us ng a secure online database (REDCap, Vanderbilt University, Nashville, TN, USA). The ISARIC case report form, which was used for data collection, considers chronic cardiac disease separately from hypertersion, other relevant comorbidities for cardiovascular diseases included in the Chronic diabetes mellitus, chronic kidney disease, obesity and smoking. Cardiovascular disease was defined as the presence of coronary artery disease, valvular heart ocease, heart failure, congenital heart disease, cardiomyopathy, aortic diseases and archythmias. Hospital admission of curred either due to COVID-19 symptoms or due to cardiovascular indications. Demographic and clinical characteristics, comorbidities, medications in use, clinical rights and symptoms related to COVID-19, complementary tests during hospitalization, treatment used, complications and outcome were obtained through electronic patient records. Variables related to severity of illness were admission to the intensive care unit (ICU), mechanical ventilation (MV), renal failure (IR), haemodialysis and death. Patients who were discharged or transferred from our centre to another hospital were followed up via telephone contact six months after hospital admission to find out their outcome (alive or dead). Laboratory confirmation of the presence of SARS-CoV-2 was defined as a positive result on real-time reverse transcriptase polymerase chain reaction (RT-PCR) assay of nasal- and oropharyngeal swab specimens using the U.S. Centre for Disease Control and Prevention (CDC) reagents and protocol²³. Specimens were systematically collected from all patients on hospital admission; they were recollected if the patients were negative on admission but developed signs or symptoms of fever or respiratory disease, or if they had been in contact with another patient who tested positive for COVID-19. All patients were tested or re-tested prior to an invasive cardiac procedure or surgery. COVID-19 was diagnosed based on the WHO interim guidance²⁴. COVID-19 was considered hospital-acquired when the patient had a negative nasopharyngeal swab on admission and a positive one 14 or more days later. Lymphopenia was defined as less than 1000 cells/microliter of peripheral blood. Comc bidities considered were those defined in the clinical notes; obesity was considered as per WHO definitions as body mass index greater than 30 ²⁵. Heart dysfunction was defined as a left ventricular ejection fraction < 54% for females and < 52% for maics. Pulmonary hypertension was defined as a pulmonary artery systolic pressure greater than 35 mmHg. The study was approved by the Ethic. So nmittee under number: 4.048.557 on May 26, 2020; the study protocol romprms to the ethical guidelines of the 1975 Declaration of Helsinki and its updates. In formed consent was obtained in written form or via digital media from the patients included prospectively or from a legally entitled next of kin. Statistical analysis: Lata were expressed as frequency and percentages (categorical variables), mear, ± standard deviation (continuous variables with normal distribution) or median and interquartile range (continuous variables with non-normal distribution). The categorical variables were analysed using the Chi-square and Fisher's exact tests. The T-Student and Mann-Whitney tests were used to compare continuous variables. The survival curve was calculated using the Kaplan-Meier method. A p level less than 0.05 was considered of significance. A model of logistic regression was developed using the stepwise methodology, where variables were included in the model until exhaustion significant statistical of the component variables in the model was reached. Data were analyzed using Jamovi 1.6 e R 4.0.1 statistical software. #### RESULTS One hundred twenty-one patients with a confirmed diagnosis of COVID-19 were included from March to September 2020 at our cardiac referral hospital. Median age was 64 years (IQR:33-72 years) and male gender corresponded to 80/121(66.1%). Two-thirds of the patients (80/121, 66.1%) were suspected of infection by SARS-CoV-2 at the time of hospital admission. Most of the patients,69 (57%), acquired the disease in the community; 20 patients (16.5%) were infected at our center, while 31 (25.6%) were transferred from other hospitals with the intection. COVID-19 was the reason for hospital admission in 42 (34.7%), and 96/11 + (81.2%) had symptoms related to the infection. Other reasons for hospital admission were acute coronary syndrome (26%), decompensated heart failure (14.8%), consolide atrioventricular block (4.1%), heart surgery (coronary artery bypass, value surgery or aortic surgery, 4.1%), pacemaker dysfunction (2.5%), valve assease (3.3%), endocarditis (2.5%), supraventricular arrhythmias (2.5%), and other causes (stroke, hematologic disease, or exogenous intoxication, 2.5% each). A large proportion of parients (84/108, 78.5%) took angiotensin-receptor blockers or angiotensin recoper inhibitors; 64/108 (59.3%) used aspirin on a regular basis, 22/108 (18.2%) took rlopidogrel, and 23/108 (21.3%) used anticoagulants prior to COVID-19 diagnosis. Demographic and clinical characteristics are described in Table 1. Regarding comorbidities, chronic cardiac diseases (excluding systemic hypertension) were found in 106/121 (87.6%), mostly coronary artery disease (62%) or valve disease (33.9%). Among the former, 49.2% had a history of myocardial infarction. Diseases of the aorta were found in 9 (7.4%) of the patients. Other common comorbidities were systemic hypertension (83.5%), dyslipidemia (52.9%), diabetes with end-organ damage (24.8%), chronic kidney disease (18.2%), or chronic obstructive pulmonary disease (11.6%). Among 67 patients with available information, 43.3% were former smokers and 19.4% were current smokers. Obesity was found in 26/84 (31%) of the patients in whom the data were registered. Further details are presented in supplementary Figure 1. In our study, 87.6 % of patients were classified as having chronic cardiac disease and 15/121 (12.4%) were not. However, among these 15 patients, 13/15 (86.7%) had systemic arterial hypertension, 6/15 (40%) had dyslipidemia, 2/15 (13.3%) had chronic renal failure, 2/15 (2%) were diabetic, 6/14 (42.9%) were obese and 3/12 (40%) were smokers. Therefore, we feel confident that our cohort was representative for cardiovascular disease. Median length of hospitalization was 19 days (IQR:8-33 days), During hospitalization, 35/119 (29.4%) underwent any invasive cardiology procedure: 31.4% coronary artery bypass surgery, 17.1% pacemaker implantation, 11.4% valve surgery and 5.7% aortic surgery. Regarding clinical manifestations (supple nei tary Figure 2), the most frequent symptoms were dyspnea (65.3%), fatigue (62.8%), tever (43.3%), cough (42.5%), and chest pain (42.5%). Complications and clinical interventions are described in supplementary Table 1. ICU admission occurred in 85,/121(66.1%) of the cases; 63/121 (52.1 %) of the patients needed supplementary exygen; 37/121 (30.6%) needed mechanical ventilation and 38 (31.4%) used vacoactive drugs, and 31.4% (38/121) needed dialysis. Viral pneumonia was present in 64/121 (52.9%) of the patients, and acute severe respiratory syndrome occurred in 28/121 (23.1%). The worsening of heart failure and cardiac arrhythmia. Occurred in 43% and 37.2%, respectively. During illness, 77/121 (63,6%) of the patients received antibiotics, 40/121 (33.1%) used steroids, and 55/119 (46.2%) received full anticoagulation. Results of laboratory tests, including echocardiogram and ECG, are presented in Table 2. Among 85 patients who had troponin evaluation, 27.1% had elevated levels; BNP was measured in 28 patients, and the median value was 1046 pg/ml. The median lymphocyte count was 1324 / μ L (IQR 762–1985), and 31.4% of the patients had lymphopenia. The medians of C-reactive protein and d-dimer were, respectively, 6.25 mg / dL (IQR 1.5-14) and 1180 ng / mL (IQR 547–2172). D-dimer was evaluated in 62 patients, among whom 77.4% had levels above 500 ng/ml. Ferritin was over 341 ng/ml in 39/54 (72%) individuals. A transthoracic echocardiogram was performed in 85% of the patients (93/121, 76,8%), as shown in Table 2. Enlarged cardiac chambers were found in 71% (66/93), left ventricular systolic dysfunction was found in 54.8% (51/93), left ventricular diastolic dysfunction was found in 52,7% (49/93), and 20.4% (19/93) had right ventricular dysfunction. Heart valve abnormalities were found in 54.8% (51/93), 45.2% (42/93) had left ventricular hypertrophy, 18.3% (17/93) had pulmonary hypertension, 11.8% (11/93) had pericardial effusion and 5.4% (5/93), pleu 31 effusion. Data on the admission ECG was found in 93 cases (93/121, 76.8%), among which 89.2% (83/93) were abnormal; 34.4% (32/93) had any abnormality of cardiac rhythm, 20.4% (19/93) had bundle branch block, 21.5% (20/93) had ST segment abnormalities, 11.8% (11/93) left ventricular overload and 6.5% (6/93) QT interval abnormalities. The most frequent arrhythm as vas atrial fibrillation (14/93, 15.1%), followed by sinus tachycardia, sinus bradycardia and supraventricular tachycardia, which occurred in 3/93(3.2%) of patients each. At the time of data analysis, overall mortality was 24% and 68.6% were discharged from hospital. As shown in table 3, on bivariate analysis, mortality related to COVID-19 was significantly associated with diabetes with end-organ damage, dyslipidemia, echocardiographically-denied pulmonary hypertension, elevated C-reactive protein and creatinine, longer ICU admission and the presence of dyspnea at admission. The use of the following medications was also associated with mortality: antibiotics, steroids, vasoactive drugs, neuromuscular blockers (p<0.001), aspirin and/or clopidogrel (p<0.057), anticoagulants, antivirals, and antifungals. The following complications were associated with increased mortality: viral or bacterial pneumonia, the presence of pleural effusions on CT scans, heart failure, arrhythmias, cardiac ischemia, coagulation disorders, anemia, acute renal failure, hyperglycemia, and hypoglycemia. Moreover, mortality was higher in patients who needed ICU treatment, underwent hemodialysis, needed mechanical ventilation or non-invasive ventilation. Prior heart disease (either coronary artery disease, valve disease, or aortic disease), systemic hypertension, smoking, chronic kidney failure or obesity were not associated with mortality. Table 5 shows laboratory features associated with mortality. Most interestingly, BNP levels and troponin levels were NOT associated with mortality in this group of cardiac patients. On multivariate analysis for mortality associated to COVID-19 in cardiac patients, only CRP protein levels and creatinine levels remained significant. For each 1 mg/dL increase in CRP, there was a 10% increase in mortality risk (OR 1.1, CI 0.0497-0.141); for each 1 mg/dL increase in serum creatinine levels, mortality increased by 53.46% (OR 1.5346, CI 0.0307-0.826). We compared patients who acquired COVID-19 during cospital admission in our center to those that had the diagnosis of COVID-19 in admission. Patients who developed COVID-19 while in hospital had as reasons for admission: decompensated heart failure (35%), acute coronary syndrome (20%), heart surgery (CABG, valve replacement or aortic surgery) in 25%, cor: plece AV block (5%), pacemaker dysfunction (5%), stroke (5%) and hematologic disease (5%). Most (18/20, 90%) were symptomatic when diagnosed with COVID-19 14edian age and IQR was 64 years (61.8-69.3) for those with hospital-acquired COVID-19 whilst it was 63 (52-72) for those who acquired it outside our hospital. There was no difference between patients with hospitalacquired COVID-19 and those who acquired COVID-19 outside our center regarding the presence of hear, disease [18/20(90%) vs 88/101 (87,1%)],P=1], COPD [4/20 (20%) vs 10/101 (9,9%), P=0,246], obesity [7/13 (53.8%) vs 19 /71 (26.8%) ,P=0,098], complicated diabetes mellitus[5/20 (25%) vs 25 /101 (24.8%), P=1], uncomplicated diabetes mellitus [4/20 (20%) vs 19/101 (18.8%) ,P=0,902] , heart valve disease (7/19 (36.8%) vs 34 /100 (34%) ,P=0,811], coronary artery disease [14/20 (70%) vs 61 /99 (61.6%),p=0.479], systemic arterial hypertension [18/20 (90%) vs 83 /101 (82.8%), P=0,39]. However, the 2 groups were different regarding the frequency of dyslipidemia (15/20 (75%) vs 49 /101 (48,5%), P=0,030] and chronic renal failure [7/20(35 %) vs 15 / 101 (15%), p=0.033], and most importantly, mortality was significantly different [10/20 (50%) vs 19 /101 (18,8%), p= 0,003]. #### Discussion Our study focuses on aspects of COVID-19 in hot pitalized patients in a high-complexity Brazilian Cardiology hospital in the first somether of 2020. This is a different scenario compared to most studies on COVID-15 to date, since the study population represents a highly selected group of patient, with significant cardiac abnormalities, mainly coronary artery, and valve disease Most patients were male and older than 60 years, similarly to other series ^{18, 26}. Over half were admitted durate decompensated heart failure, and the reason for clinical deterioration was infection by SARS-Cov-2, illustrating the impact of the pandemic in the study period. On the other hand, nosocomial transmission of the virus occurred in nearly a fit h of our patients (20 [16.5%]), highlighting the risk of COVID-19 for those admitted for cardiac surgery or other routine procedures. Importantly, patients who acquired COVID-19 in hospital had a much higher mortality (50%) than those who had the diagnosis of COVID-19 on admission (18.8% mortality), highlighting the danger nosocomial COVID-19 represented, despite the fact our center was not to receive COVID-19 patients and was to remain COVID-free. Other clinical features reported by several groups were frequently seen, such as shortness of breath, fatigue, and cough ^{6,12,15,17-19,27,28}. However, we noticed a high rate of chest pain, which was the main complaint in over a third of patients. Since a large part of this population consisted of patients with coronary artery disease, chest pain might be viewed as a manifestation of prior cardiac disease, possibly worsened by the current infection. Interestingly, pleural effusions occurred in a quarter of patients, probably due to heart failure. This radiological feature is not usual in COVID-19, and in a systematic review of chest imaging findings in COVID-19 pleural effusions were described in 0.9 to 10.3% of included studies with the presence of pleural effusion. On CT scans, of heart failure, of arrhythmias, and of cardiac ischemia, were applicantly associated to mortality in this cohort of patients with cardiovascular dileases, as were pulmonary hypertension and right ventricular dysfunction. Intensive care admission was necessary for 2/3 of our cohort, a rate much higher than seen in Spain (18.5%) ²⁸, the USA (14.2%) ²⁶, China (14.8%) ⁵ and the United Kingdom (17%) ¹⁸. This is not unexpected, as our cohort was particularly represented by patients with a variety of severe heart conditions. In the current literature, severe complications of COVID-19 such as respiratory failure and acute renal failure are reported to occur in 14 to 19% of cases ^{5,15}; however, in our study, incidences were 23.1% and 30.6% respectively, highlighting, once more, the harsh course of disease in patients with cardiac disease. Despite this, overall mortality was 24%, which is similar to mortality reported for hospitalized patients in Spain (28%), the USA (21%) and England/Wales (26%) 26,28,18 , but higher than that reported in a Brazilian series from a private hospital (6.4%) and China (2.3%) 9,5 . Patients with diabetes with end-organ damage, those who developed heart failure or cardiac ischemia had greater mortality; this has also been reported by others ^{5,6,19,11,28,30}. Zhou et al showed that 51.9% of patients who developed heart failure died, compared with 11.7% of those who did not present heart failure ⁶. It is not clear if heart failure occurred because of worsening previous left contricular failure (LVF) or because of new-onset LVF ¹³. Moreover, patients with circlipidemia and pulmonary hypertension had higher mortality. The former may overlap to some degree with coronary artery disease patients, as dyslipidemia one of the most important risk factors for this condition, and that might explain their worse prognosis. Regarding the latter, it is known that pulmonary hypertension (in this population, most likely found in patients with valve disease or heart failure) is associated with poorer outcomes in general, and especially when challenged by infectious states. Cardiac arrhy*hmias are another common CV manifestation described in patients with COVID-19. In our study, the most prevalent arrhythmia was atrial fibrillation. An American study with 9.564 patients showed that atrial fibrillation increased the risk of mortality in patients hospitalized for COVID-19. The prevalence and incidence of AF during hospitalization for COVID-19 is unclear; however, one should expect similarities with other systemic inflammatory response syndromes and sepsis ³¹. We did not find atrial fibrillation was associated with mortality in our study of cardiac patients. Though nonspecific, palpitations were part of the presenting clinical features in 7.3% of patients in a cohort of 137 patients admitted for COVID-19 disease ³². In hospitalized COVID-19 patients, cardiac arrhythmia was noted in 16.7% of 138 patients in a Chinese cohort and was more common in ICU patients than in non-ICU patients (44.4% vs. 6.9%) ²¹. A high rate of cardiac arrhythmias may be due to metabolic disorder, hypoxemia, neuro-hormonal stress or inflammation resulting from SARS-CoV-2 infection and was associated to mortality. Malignant tachyarrhythmias, associated with high troponin levels, however, are often associated with underlying myocarditis ¹³. Laboratory features associated with greater mortality were increased creatinine and CRP levels, similarly to other studies ^{18,33}. Interestingly, BNP levels and troponin were not associated with mortality, differently from other reports ^{7,34}. We hypothesize that, in patients with cardiac arease, these cardiac injury markers may not be as important as prognostic adicators as in the general patient population. Nonetheless, this inference may be limited by the small number of patients with available data for these laboratory markers. Other limitations of our study are its single-center characteristic, and the fact that laboratory and imaging tests were not uniformly applied to all patients but were ordered at the discretion of the attending physicians, what derives from the "real-world" scenario of the study. Notwithstanding, these drawbacks offer a picture of current practice in the setting of the COVID-19 pandemic at a public, specialized Cardiology healthcare institution of a developing country. #### Conclusions Cardiac patients hospitalized with COVID-19 often presented with dyspnea, chest pain and signs or symptoms of congestive heart failure. Tomographic images showed ground-glass opacities in nearly ¾ of patients and pleural effusions in a quarter of cases. Nearly a fifth of hospitalized patients acquired COVID-19 while being cared for other cardiac conditions, and this group had a particularly high mortality of 50%. Mortality for the whole group of patients with COVID19 was high, at 24%, but like other series of hospitalized patients with COVID-19. On bivariate analysis, BNP levels and troponin levels were not associated with mortality, suggesting these are not good discriminators of prognosis in cardiac patients, and on mu'tivariate analysis, only CRP and creatinine levels were significant. #### **Acknowledgments:** We thank Isabel da Nóbrega for her help with the RedCap, and we thank all the medical and non-medical staff wnc looked after the patients in this study. #### References 1.Du RH, Liu LM, Yin V, V/ang W, Guan LL, Yuan ML, Li YL, Hu Y, Li XY, Sun B, Peng P, Shi HZ. Hospitalization and Critical Care of 109 Decedents with COVID-19 Pneumonia in Wuhan, China. Ann Am Thorac Soc. 2020; 17:839-846. 2.Puntmann VO, Carerj ML, Wieters I, Fahim M, Arendt C, Hoffmann J, Shchendrygina A, Escher F, Vasa-Nicotera M, Zeiher AM, Vehreschild M, Nagel E. Outcomes of cardiovascular magnetic resonance imaging in patients recently recovered from Coronavirus disease 2019 (COVID-19). JAMA Cardiol 2020; 5:1265-1273. 3.Coronavirus disease (COVID-10) pandemic. World Health Organization,2021 Available at: https://covid19.who.int. Accessed on July 14, 2021. 4.Guo T, Fan Y, Chen M, Wu X, Zhang L, He T, Wang H, Wan J, Wang X, Lu Z. Cardiovascular Implications of Fatal Outcomes of Patients with Coronavirus Disease 2019 (COVID-19). JAMA Cardiol. 2020 Jul 1;5(7):811-818. 5.Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a eport of 72 314 cases from the Chinese Center for Disease Control and Prevention. JA'VID 2020; 323:1239-1242. 6.Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, Xiang J, Wan, Y, Song B, Gu X, Guan L, Wei Y, Li H, Wu X, Xu J, Tu S, Zhang Y, Chen H, Cao B. Clir ical course and risk factors for mortality of adult inpatients with COVID-19 : Wuhan, China: a retrospective cohort study. Lancet 2020;395:1054-1062. 7.Wu C, Chen X, Cai Y, Xia J, Zhou X, Xu S, Huang H, Zhang L, Zhou X, Du C, Zhang Y, Song J, Wang S, Chao Y, Yang Z, Xu L. Zhou X, Chen D, Xiong W, Xu L, Zhou F, Jiang J, Bai C, Zheng J, Song Y. Risk factors as a ciated with acute respiratory distress syndrome and seath in patients with coro vavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern Med 2020;180.934-943. 8. Yang X, Yu Y, Xu J, Shu L, X a J, Liu H, Wu Y, Zhang L, Yu Z, Fang M, Yu T, Wang Y, Pan S, Zou X, Yuan S, Chang L. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med 2020; 8:475-481. 9. Pachiega J, Afonso AJDS, Sinhorin GT, Alencar BT, Araújo MDSM, Longhi FG, Zanetti ADS, Espinosa OA. Chronic heart diseases as the most prevalent comorbidities among deaths by COVID-19 in Brazil. Rev Inst Med Trop Sao Paulo 2020;62: e45. 10.Ruan Q, Yang K, Wang W, Jiang L, Song J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med 2020; 46:846-848. 11.Onder G, Rezza G, Brusaferro S. Case-fatality rate and characteristics of patients dying in relation to COVID-19 in Italy. JAMA 2020; 323:1775-1776. 12. Jutzeler CR, Bourguignon L, Weis CV, Tong B, Wong C, Rieck B, Pargger H, Tschudin-Sutter S, Egli A, Borgwardt K, Walter M. Comorbidities, clinical signs and symptoms, laboratory findings, imaging features, treatment strategies, and outcomes in adult and pediatric patients with COVID-19: A systematic review and meta-analysis. Travel Med Infect Dis 2020; 37:101825. 13.Driggin E, Madhavan MV, Bikdeli B, Chuich T, Laracy J, Biondi-Zoccai G, Brown TS, Der Nigoghossian C, Zidar DA, Haythe J, Brodie D, Bockman JA, Kirtane AJ, Stone GW, Krumholz HM, Parikh SA. Cardiovascular considerations for patients, Health Care Workers, and Health Systems during the COVID-19 pandemic. J Am Coll Cardiol 2020; 75:2352-2371. 14.Clerkin KJ, Fried JA, Raikhelkar ¹ Sayer G, Griffin JM, Masoumi A, Jain SS, Burkhoff D, Kumaraiah D, Rabbani L, Schv ar.. A, Uriel N. COVID-19 and cardiovascular disease. Circulation 2020; 141:1648-1655. 15.Guan, Wei-Jie Ni, Zheng-v. Hu, Yu Liang, Wenhua Ou, Chun-Quan He, Jian-xing Liu, Lei Shan, Hong Loi Chun-liang Hui, David Du, Bin Li, Lan-juan Zeng, Guang Yuen, Kwok-Yung Chen, Ru-chong Tang, Chun-li Wang, Tao Chen, Ping-yan Xiang, Jie Zhong, Nan-shan. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med 2020; 382:1708-1720. 16.Epidemiology Working Group for NCIP Epidemic Response, Chinese Center for Disease Control and Prevention. The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19) in China. Zhonghua Liu Xing Bing Xue Za Zhi. 2020 Feb 10;41(2):145-151. Chinese. doi: 10.3760/cma.j.issn.0254-6450.2020.02.003. PMID: 32064853. 17. Casas-Rojo JM, Antón-Santos JM, Millán-Núñez-Cortés J, Lumbreras-Bermejo C, Ramos-Rincón JM, Roy-Vallejo E, Artero-Mora A, Arnalich-Fernández F, García-Bruñén JM, Vargas-Núñez JA, Freire-Castro SJ, Manzano-Espinosa L, Perales-Fraile I, Crestelo-Viéitez A, Puchades-Gimeno F, Rodilla-Sala E, Solís-Marquínez MN, Bonet-Tur D, Fidalgo-Moreno MP, Fonseca-Aizpuru EM, Carrasco-Sánchez FJ, Rabadán-Pejenaute E, Rubio-Rivas M, Torres-Peña JD, Gómez-Huelgas R; en nombre del Grupo SEMI-COVID-19 Network. Clinical characteristics of patients hospitalized with COVID-19 in Spain: Results from the SEMI-COVID-19 Registry. Rev Clin Esp (Barc) 2020; 220:480-494. 18.Docherty AB, Harrison EM, Green CA, Hardwick HE, Pius R, Norman L, Holden KA, Read JM, Dondelinger F, Carson G, Merson L, Lee J, Fintkin D, Sigfrid L, Halpin S, Jackson C, Gamble C, Horby PW, Nguyen-Van-Tam IS, Ho A, Russell CD, Dunning J, Openshaw PJ, Baillie JK, Semple MG; ISARIC4C nvertigators. Features of 20133 UK patients in hospital with covid-19 using the ISARIC WHO Clinical Characterization Protocol: prospective observational cohort study. BMJ 2020;369:m1985. 19.Mahumud RA, Kamara JK, Rengaho AMN. The epidemiological burden and overall distribution of chronic comorbidities in coronavirus disease-2019 among 202,005 infected patients: evidence from a systematic review and meta-analysis. Infection 2020; 48:813-833. 20.Kasal DA, De Lorenco A, Tibiriçá E. COVID-19 and Microvascular Disease: Pathophysiology of SARS-CoV-2 Infection with Focus on the Renin-Angiotensin System. Heart Lung Circ 2020:23:1596-1602. 21. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, Wang B, Xiang H, Cheng Z, Xiong Y, Zhao Y, Li Y, Wang X, Peng Z. Clinical Characteristics of 138 Hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA 2020; 323:1061-1069. 22.ISARIC4C. ISARIC Coronavirus Clinical Characterisation Consortium. 2020. Available at: https://isaric4c.net/. 23.CDC 2019-Novel Coronavirus (2019-nCoV) Real-Time RT-PCR Diagnostic Panel. Centers for Disease Control and Prevention. 2020 July 13 [Cited 2020 July 26] Available at: https://www.fda.gov/media/134922/download. 24.World Health Organization. (2020). Clinical management of COVID-19: interim guidance. 27 May 2020. World Health Organization. Available at: https://apps.who.int/iris/handle/10665/332196. 25.World Health Organization. (2020). The Global Health Observatory. Available at: https://www.who.int/data/gho/data/themes/them z-u tails/GHO/body-mass-index-(bmi). 26.Richardson S, Hirsch JS, Narasimhan M, Cra vford JM, McGinn T, Davidson KW, the Northwell COVID-19 Research Consortium, Barnaby DP, Becker LB, Chelico JD, Cohen SL, Cookingham J, Coppa K, Diefenbach MA, Dominello AJ, Duer-Hefele J, Falzon L, Gitlin J, Hajizadeh N, Harvin Ta, Tirschwerk DA, Kim EJ, Kozel ZM, Marrast LM, Mogavero JN, Osorio GA, Ciu M, Zanos TP. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City Area. JAMA 2020; 273.2052-2059. 27. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, Cheng Z, Yu T, Xia J, Wei Y, Wu W, Xie X, Yin W, Li H, Liu M, Xiao Y, Gao H, Guo L, Xie J, Wang G, Jiang R, Gao Z, Jin Q, Wang J, Cao B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 15: 497-506. 28.Berenguer J, Ryan P, Rodríguez-Baño J, Jarrín I, Carratalà J, Pachón J, Yllescas M, Arriba JR. Characteristics and predictors of death among 4035 consecutively hospitalized patients with COVID-19 in Spain. Clin Microbiol Infect 2020;26:1525-1536. - 29.Sun Z, Zhang N, Li Y, Xu X. A systematic review of chest imaging findings in COVID-19. Quant Imaging Med Surg. 2020; 105:1058-1079. - 30.Matsushita K, Ding N, Kou M, Hu X, Chen M, Gao Y, Honda Y, Zhao D, Dowdy D, Mok Y, Ishigami J, Appel LJ. The Relationship of COVID-19 Severity with Cardiovascular Disease and Its Traditional Risk Factors: A Systematic Review and Meta-Analysis. Glob Heart. 2020; 15:64. - 31. Mountantonakis SE, Saleh M, Fishbein J, Gandomi A, Lesse, M, Chelico J, Gabriels J, Qiu M, Epstein LM; Northwell COVID-19 Research Consoltium. Atrial fibrillation is an independent predictor for in-hospital mortality in patients admitted with SARS-CoV-2 infection. Heart Rhythm 2021; 18:501-507. - 32.Liu K, Fang YY, Deng Y, Liu W, Wang MF, Ma JP, Xiao W, Wang YN, Zhong MH, Li CH, Li GC, Liu HG. Clinical characteristics of movel coronavirus cases in tertiary hospitals in Hubei Province. Chin Med J Engl (020) 133:1025-1031. - 33.De Melo AC, Thuler LCS, da Silva JL, de Albuquerque LZ, Pecego AC, Rodrigues LOR, da Conceição MS, Garrido MM, Quintella Mendes GL, Mendes Pereira ACP, Soares MA, Viola JPB; Brazilian National Cancer Institute COVID-19 Task Force. Cancer in patients with COVID-19: A report from the Brazilian National Cancer Institute. PLoS One 2020;15:e0241261. - 34.Almeida Junior G L G, Braga F, Jorge J K, Nobre G F, Kalichsztein M, Faria P M P. Bussade B, Penna G L, Alves V O, Pereira M A, Gorgulho P C, Faria M R S E, Drumond L E, Carpinete F B S, Neno A C L B. Neno A C A . Prognostic value of Troponin- T and B-Type Natriuretic Peptide in patients hospitalized for COVID-19. Arq. Bras. Cardiol 2020; 115:660-666. **Table 1.** Demographic and clinical features of 121 hospitalized patients with cardiac disease and COVID-19, March-September 2021. | Variables | N (%) | |---------------------------------------------------|------------| | Age, years | | | Median (IQR) | 64 (33-72) | | Range | 19-90 | | < 60 | 46 (38) | | 60–74 | 55 (45.5) | | ≥ 75 | 20 (16.5) | | Sex | | | Male | 80 (66.1) | | Female | 41 (33.9) | | Drugs in use | 13 | | ACE ¹ inhibitors and ARBs ² | 84 (69.4) | | β_blockers | 74 (61.2) | | Aspirin | 64 (52.9) | | Diuretic | 51 (42.1) | | Calcium channel blockers | 27 (22.3) | | Anticoagulants | 23 (19) | | Vasodilator | 23 (19) | | Clopidogrel | 22 (18.2) | | Statins | 79 (65.3) | | Anticoagulant types | | | Warfarin | 16 (13.2) | | Enoxaparin | 6 (5.0) | | NOAC ³ | 1 (0.8) | | Cardiac Disease | 106 (87.6) | | Systemic Arterial Hypertension | 101 (83.1) | | Coronary artery disease | 75 (62) | | Multiarterial coronary artery disease | 51 (42.1) | | Dyslipidemia | 64 (52.9) | | Myocardial infarction | 59 (48.8) | | Aortic disease | 9 (| (7.4) | |----------------------------------------|-------|-------| | Valvulopathy | 41 (3 | 33.9) | | Mitral regurgitation | 19 | (15) | | Aortic stenosis | 13 (1 | LO.7) | | Aortic regurgitation | 10 (| (8.3) | | Mitral stenosis | 9 (| (7.4) | | Tricuspid regurgitation | 5 (| (4.1) | | Past cardiac Surgery | | | | Coronary artery by-pass graft | 13 (1 | 10.7) | | Aortic and/or mitral valve replacement | 11 (| (9.1) | | Other | 5 (| (4.1) | | Past cardiac procedures | .0 | | | Stent angioplasty | 33 (2 | 27.3) | | Implantable cardioverter-defibrillator | 4 (| (3.3) | | Other | 3 (| 2.5) | ¹ Angiotensin converting enzyme inhibitors.² Angiotensin II receptor blockers;³ Novel oral anticoagulants. Table 2. Selected laboratory features in 121 hospitalized patients with cardiac disease and COVID-19. | Laboratory tests* | | |--------------------------------------------------|---------------------| | Atrial Natriuretic Peptide | 1303.82 (±995.19) | | (n=28; pg/ml;mean. ±SD) | | | Troponin (n= 85) | 62 (72.9%) negative | | Ferritin (n=54; ng/ml;median.IQR) | 755 (271-2839) | | D-dimer (n=62; ng/mL; median. IQR) | 1180 (547-2172) | | C-reactive protein (n = 106; mg/dL; median. IQR) | 6.25 (1.5-14) | | Leukocyte count (n = 121; $/\mu$ L; median. IQR) | 7150 (5160–9670) | | Lymphocyte count (n = 121;/μL; median. IQR) | 1324 (762–1983) | | Neutrophil count (n = 121; /μL; median. IQR) | 4604 (314 5-7.259) | | Hemoglobin (n = 121; g/dL; mean. ±SD) | 12.3 (+1.5) | | Creatinine(n=119; mg/ dL;median.IQR) | 1 57 (0,85-1,56) | | Chest Tomography findings | | | n =97 | | | Ground-glass opacity < 25 % | n=32 (33%) | | Ground-glass opacity :25 % a 50% | n =20 (20.6%) | | Ground-glass opacity >50% | n=21 (21.6%) | | Pleural effusion | n =23 (23.7%) | | Consolidations | n =15 (15.5%) | | Pericardial effusion | n =3 (3.1%) | | Normal | n =6 (6.2%) | Reference values: atrial natriu. atic peptide:< 100 pg/dLl; troponin negative (below reference value of 0,16 ng/ml); ferritin:< 341 \lg/n '; D-dimer: < 500 ng/mL; leukocyte count:4000 to 10000/ μ L; lymphocyte count:800 to 4500/ μ L; aut. april count: 1600 to 7500/ μ L; hemoglobin: 11.5 to 16.4 g/dL; C-reactive protein:< 0.5 mg/dL. **Table 3**. Features associated with mortality in 121 hospitalized patients with cardiac disease and COVID-19. March to September 2020. | Variables | Dead
(n=29) | Alive
(n=92) | OR (95% CI) | P value | |-------------------------------------|----------------|-----------------|---------------------------------|---------| | Age | | | | | | >60 | 15(51.7%) | 39(42.4%) | 1.4 (0.6-3.3) | 0.378 | | Male gender | 20(69%) | 60(65.2%) | 0.8 (0.3-2.0) | 0.710 | | Diabetes with end-organ damage | 12(41%) | 18(19.6%) | 2.9 (1.1-7.1) | 0.018 | | Dyslipidemia | 23(79.3%) | 41(44.6%) | 4.7 (1.7-12.8) | 0.001 | | Cardiac disease | 27(93.1%) | 79(85.9%) | 2.2 (0.4-10.5) | 0.518 | | COPD | 4(13.8%) | 10(10.9%) | 1.31 (0.3-4.5) | 0.741 | | CRF | 14(15.2%) | 8(27.6%) | 2.1 (0.7-5.7) | 0.132 | | Arterial hypertension | 27(93.1%) | 74(80.4%) | 3.2 (0.7-15.1) | 0.153 | | Coronary heart disease | 18/28(64.3 %) | 57/91(62.6 %) | 1.7 (0.4-2.5) | 0.874 | | Obesity | 7/20(35%) | 19/64(2).7% | 1.2 (0.4-3.7) | 0.654 | | Previous clopidogrel and/or aspirin | 19/24(79.2%) | 47/8/(35%) | 2.99 (1.0-8.7) | 0.057 | | Previous Statin use | 17/29(58.6%) | 62, 22(67.4%) | 0.68 (0.2-1.6) | 0.387 | | | 28/28(100%) | 68/36 (79%) | 0.06(0.003-1.1) | 0.006 | | Any COVID-19 symptom Fatigue | 24(82.8%) | 5. 56.5%) | 3.6 (1.2-10.5) | 0.006 | | Shortness of breath | 27(93.1%) | 52(56.5%) | 10.4 (2.3-46.3) | <0.013 | | Chest pain | 14(48.3%) | 37(40.7%) | | 0.470 | | Pleural effusion | 11/27(46.7%) | 12(13.0 %) | 1.3 (0.5-3.1)
4.5 (1.7-12.2) | 0.470 | | Lung consolidation on CT scan | 7(4.1%) | 8(8.7 %) | 2.3 (0.7-7.3) | 0.004 | | Viral pneumonia | 23(75 3 %) | 41(44.6 %) | 4.7 (1.7-12.8) | 0.028 | | Bacterial pneumonia | 29(65.5 %) | 21(22.8 %) | 6.4 (2.5-15.9) | <.001 | | Heart failure | ۷. (72.4 %) | 31(33.7 %) | 5.1 (2.0-13.0) | <.001 | | Arrhythmia | 22(75.9 %) | 23(25.0 %) | 9.4 (3.5-24.9) | < .001 | | Myocardial ischaemia | 13/28(46.4 %) | 10/91(11.0 %) | 7.0 (2.6-18.9) | < .001 | | Coagulation disorder | 11(37.9 %) | 3(3.3 %) | 18.1 (4.5-71.6) | < .001 | | Anaemia | 20(69.0 %) | 15(16.3 %) | 11.4 (4.3-29.8) | < .001 | | Acute renal injury | 23(79.3 %) | 14(15.2 %) | 21.4 (7.3-61.9) | < .001 | | Hyperglicaemia | 18(62.1 %) | 21(22.8 %) | 5.5 (2.2-13.5) | < .001 | | Hypoglicaemia | 5/28(17.9 %) | 3(3.3 %) | 6.45 (1.4-29.0) | 0.017 | | Admission to intensive are | 27(93.1%) | 53(57.6%) | 9.9 (2.2-44.3) | <0.001 | | Mechanical ventilation | 22(75.9%) | 15(16.3%) | 16.1 (5.8-44.5) | <0.001 | | Non-invasive ventilation | 9(33.3%) | 5(9.6%) | 4.7 (1.3-15.9) | 0.013 | | Oxygen therapy | 21(72.4%) | 31(33.7%) | 5.1 (2.0-13.0) | <0.001 | | Neuromuscular blocking agents | 12(41.4%) | 1(1.1%) | 64.2 (7.8-527) | <0.001 | | Nitric oxide | 2(6.9%) | 0% | 16.8 (0.7-361) | 0.056 | | Pronation | 22.2% | 5.5% | 4.9 (1.3-17.7) | 0.017 | | Hemodyalisis | 15(51.7%) | 9(9.8%) | 9.8 (3.6-26.9) | <0.001 | | Vasoactive drugs | 24(82.8%) | 14(15.2%) | 26.7 (8.7-81.9) | <0.001 | **Table 4.** Laboratory features associated with mortality in 121 hospitalized patients with cardiac disease and COVID-19. | Variables | Alive | Dead | OR (95% CI) | P value | |---------------------------------------|-----------------|------------------|--------------------|---------| | Leukocyte count (cells/µl) | 6740(5120-8993) | 8530(6610-11010) | 1.0 (1.0-1.0) | 0.037 | | Lymphocyte count (cells/µl) | 1451(1029-1999) | 720 (570-1940) | 0.9 (0.9-1.0) | 0.008 | | Glucose (mg/dl) | 110(94.5-147) | 157(117-207) | 1.0 (1.0-1.0) | 0.008 | | AST (IU) | 26.5(19.8-44.3) | 52(41-79) | 1.0 (0.0-1.0) | 0.001 | | Creatinine (mg/dl) | 1.04(0.8-1.39) | 1.46(1.05-2.25) | 1.4(1.0-2.0) | <0.001 | | CRP levels (mg/dl) | 3.4(1.2-9.2) | 17(7-31) | 1.0(1.0-1.1) | <0.001 | | Ferritin levels (μg/l).
n=54 | 585(197-1066) | 1488(654-2106) | 1.0 (1.0-1.0) | 0.007 | | D-dimer (ng/ml). n=62 | 1130(498-1893) | 1545(785 394.7) | 1.0 (1.0-1.0) | NS | | BNP (pg/ml). n=28 | 1298±1069 | 1332±F35 | 1.0 (0.9-1.0) | NS | | Troponin* (n=85) | 46/59(78%) | 16/27(01 5%) | 0.452(0.166-1.23) | NS | | Echocardiogram (n=93) | | | | | | Pulmonary | 6 (9.2%) | 1: (4(.7%) | 6.7(2.1-21.1) | <0.001 | | hypertension | | | | | | Enlarged cardiac chambers | 43(66 .2 %) | 22(81 .5 %) | 2.2(0.7-6.7) | 0.2092 | | Left ventricular systolic dysfunction | 32(49 .2 %) | 18(66 .7 %) | 2.0(0.8-5.2) | 0.126 | | Right ventricular dysfunction | 9(13 .8 %) | 10(37.0%) | 3.6(1.2-10.5) | 0.012 | | Heart valve abnormalities | 35 (53.8 %) | 14 (51.9 %) | 0.9(0.3-2.2) | 0.861 | | Left ventricular hypertrophy | 23(45.1%) | 14(51.9%) | 1.4(0.5-3.5) | 0.442 | | Pericardial effusion | 9/13.8%) | 2(7.4%) | 0.4(0.1-2.4) | 0.386 | | Electrocardiogram (n=93) | | | | | | Any abnormality of cardiac rhythm | 18 (26.5 %) | 14(56%) | 3.5(1.3-9.2) | <0.008 | | Atrial fibrillation | 8 (11.8%) | 5(20%) | 1.8 (0.5-6.3) | 0.310 | | Bundle branch block | 14 (15.2%) | 5(17.2%) | 1.1(0.3-3.5) | 0.775 | | ST segment | 15(22.1 %) | 5(20 %) | 0.8(0.2-2.7) | 1.000 | | abnormalities | | | | | | QT interval abnormalities | 4(5.9 %) | 2(8.0%) | 1.3(0.2-8.1) | 0.658 | ^{*}troponin levels considered positive or negative. with a cut-off value of 0,16 ng/ml;P levels calculated by the Mann-Whitney test, except for BNP (t-Student test); D-dimer levels were obtained in 62 patients; ferritin in 54 and BNP in 28 patients. **Declaration of interests** | relationships that could have appeared to influence the work reported in this paper. | | |---|--| | ☐The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: | | | | | ### Highlights: - Cardiac patients with COVID-19 often presented with dyspnea, chest pain and heart failure. - Tomographic images showed ground-glass opacities in nearly ¾ of patients and pleural effusions in 1/4. - Nearly 1/5 cardiac patients acquired COVID-19 while in hospital. - CRP and creatinine levels were associated with mortality in cardiac patients. - BNP and troponin levels were not associated with mortality.